EMISSION INFORMATION REPORT in accordance with C.C.R. § 2146 (initial FIR-reference: 2014-Q1)

1.0 Manufacturer's Corporate Name

Daimler, AG ("DAG") and Mercedes-Benz USA, LLC ("MBUSA")

2.0 <u>Description of the Defect:</u>

Submission date: 2015-12-15 Amendment(s): 2015-12-22 2016-03-21

Part designation: NOx Sensor
Part number(s): A 000 905 34 03

An increased resistance in the air-reference-electrode of the sensor may lead to increased Nernst voltage which may cause the modulator to oscillate. This situation leads to a permanent deterioration of the sensor signal quality (oscillating signal). The MIL is activated.

3.0 <u>Description of Each Class of Vehicles Potentially Affected</u>

Affected Mercedes-Benz products are certain model year 2012 and <u>2013</u> Mercedes-Benz vehicles ("subject vehicles"). The table below lists the potentially affected vehicle test groups for the subject vehicles.

MY	Engine Family	MB Vehicle Code	Transm. Config.	Model	CA Sales
2012	CMBXV03.0U2 B	W212DE30TC	L-7	E350 (BLUETEC)	808
2013	DMBXT02.2U2 A	X204DE22TC 4x4	<u>L-7</u>	GLK 250 (BLUETEC) 4M	372
				Total	<u>1.180</u>

4.1 Number of Vehicles Estimated to be Potentially Affected

The number of potentially affected vehicles is $\underline{1.180}$. DAG estimates that approximately $\underline{210}$ of all potentially affected vehicles will experience this situation in the field.

4.2 Address of Plants at Which Potentially Affected Vehicles Were Produced

Mercedes-Benz, Sindelfingen, Germany Mercedes-Benz, Bremen, Germany

EIR-reference (EIR_year_number_partname_amendment_date.doc) [FILENAME]

5.0 Emission and Drivability Impact of Affected Vehicles

Drivability is not affected.

There is no impact on emissions resulting from a malfunction of the downstream NOx-sensor. In the event of complete sensor failure, the dosing of the SCR automatically switches from a NOx sensor value to a value based on the NOx exhaust-gas emission level measured upstream or downstream of the catalytic converter. The injected AdBlue quantity is therefore always calculated based on a modelled value. Thus, the NOx emissions will always be within the normal series test variation, even when the back-up model values are used to calculate the SCR dosing rate.

6.0 Emission Data

DAG has conducted emission testing (FTP75) with a MY11 E-Class E350 BLUETEC (W212 OM642 BIN 5). The second line shows the results of the baseline test preparation. Lines 3-6 show the results of the test preparation in case of failure of the upstream NOx-Sensor (shift to the modeled value for injected AdBlue amount). Lines 7-10 show the results of the test preparation in case of failure of the downstream NOx-Sensor (diagnostic sensor). The NOx emissions are within the normal series test variation.

	NMHC [g/mi]	CO [g/mi]	NOx [g/mi]	PM [g/mi]
FUL (120k) certification standards	0,055	2,1	0,07	0,01
Baseline 120k AGA (SCR aged)	0,023	0,19	0,058	0,0002
Exhaust Gas Sensors NOx sensor (upstream) – response rate	0,011	0,112	0,052	0,0002
Exhaust Gas Sensors NOx sensor (upstream) – amplitude offset	0,011	0,111	0,067	0,0005
Exhaust Gas Sensors NOx sensor (upstream) – amplitude plausability	0,011	0,099	0,053	0,0002
Exhaust Gas Sensors NOx sensor (upstream) – dynamic	0,013	0,107	0,057	0,0003
Exhaust Gas Sensors NOx sensor (downstream) – response rate	0,01	0,103	0,055	0,0002
Exhaust Gas Sensors NOx sensor (downstream) – amplitude offset	0,011	0,099	0,047	0,0005
Exhaust Gas Sensors NOx sensor (downstream) – amplitude plausability	0,011	0,109	0,053	0,0002
Exhaust Gas Sensors NOx sensor (downstream) – dynamic	0,012	0,107	0,055	0,0003

